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Abstract 18 

Deterministic dynamical modeling of future climate conditions and associated hazards, such as 19 

flooding, can be computationally-expensive if century-long time-series of waves, sea level 20 

variations, and overland flow patterns are simulated. To alleviate some of the computational 21 

costs, local impacts of individual coastal storms can be explored by first identifying particular 22 

events or scenarios of interest and dynamically modeling those events in detail. In this study, an 23 

efficient approach to selecting storm events for subsequent deterministic detailed modeling of 24 

coastal flooding is presented. The approach identifies locally relevant scenarios derived from 25 

regional datasets spanning long time-periods and covering large geographic areas. This is done 26 

by identifying storm events from global climate models using a robust, yet computationally 27 

simple approach for calculating total water level proxies at the shore, assuming a linear 28 

superposition of the important processes contributing to the overall total water level. Clusering of 29 

the total water level time-series is used to define coherent coastal cells where similar return 30 

period water level extrema occur in response to region-wide storms. Results show that the more 31 

severe but rare coastal flood events (e.g., the 100-year (yr) event) typically occur from the same 32 

storm across the region, but that a number of different storms are responsible for the less severe 33 

but more frequent local extreme water levels (e.g., the 1-yr event). This new ‘storm selection’ 34 

approach is applied to the Southern California Bight, a region of varying shoreline orientations 35 

that is subject to wave refraction across complex bathymetry, and shadowing, focusing, 36 
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diffraction, and dissipation of wave energy by islands. Results indicate that wave runup 37 

dominates total water level extremes at this study site, highlighting the importance of 38 

downscaling global-scale models to nearshore waves when seeking accurate projections of local 39 

coastal hazards in response to climate change.  40 

Keywords: coastal storm cells, dynamical downscaling, global climate models, k-means 41 

clustering, Southern California  42 

1 Introduction 43 

Flood maps are regularly used for design and hazard mitigation planning. However, until 44 

relatively recently, little information existed on probable coastal flood hazards under climate 45 

change. Changes in atmospheric conditions such as temperature, atmospheric pressure, and wind 46 

can impart deviations in both magnitude and frequency of storm events compared to the past 47 

(Graham and Diaz, 2001) which, combined with sea level rise, will affect coastal flooding 48 

projections (Sweet and Park, 2014; Barnard et al., 2014).  49 

Scientists and coastal engineers tasked with developing flood maps typically develop 30+ 50 

year time-series of total water levels (TWL) using historical observations of tides, waves, and 51 

non-tidal water level fluctuations. High TWL events are then selected and extrapolated to 52 

extreme events by fitting probability density functions and applying extreme value theory (e.g. 53 

Allan et al., 2012). Some approaches develop an ensemble of synthetic TWLs time-series, taking 54 

into account conditional dependencies between tides, storm surges, and wave events in a Monte 55 

Carlo sense (Callaghan et al., 2008; Serafin and Ruggiero, 2014), while others apply a 56 

deterministic approach in which selected storm events are dynamically simulated (e.g., Barnard 57 

et al., 2014).  58 

Future climate cannot necessarily be derived from trends of the intensity and frequency 59 

of past storms because nonlinear responses due to changing ocean temperatures and atmospheric 60 

circulation are expected (Yin, 2005; Solomon et al., 2007; Ulbrich et al., 2008; Seiler et al., 61 

2016; Michaelis et al., 2017; Mentaschi et al., 2017). Therefore, when considering the range of 62 

possible changes in the future climate and its influence on coastal hazards, atmosphere-ocean 63 

global climate models (GCMs) are currently the best available tools for assessing different 64 

scenarios. However, the coarse resolution of GCMs limits their ability to represent local 65 

conditions that are essential for coastal impact studies (IPCC, 2007) and thus typically require 66 

downscaling of GCM fields to regional and local scales (Wood et al., 2004). A number of studies 67 

have conducted regional downscaling of GCMs for evaluation of changes in future storm surges 68 

and wave conditions (e.g., Harper et al. 2009; Smith et al 2010; Mousavi et al., 2011; Bromirski 69 

et al., 2012; Hoeke et al 2013; Camus et al., 2014; Erikson et al., 2015), but only a few have 70 

developed detailed flood hazard maps from the combined impacts of projected sea level rise, 71 

wave runup, storm surge, and other non-tidal residuals. One such study employs the Coastal 72 

Storm Modeling System (CoSMoS, Barnard et al., 2014), a predominantly deterministic 73 
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approach to make detailed predictions of sea level rise and storm-induced coastal flooding over 74 

large geographic scales. The system uses the global WaveWatch III wave model, the 75 

TOPEX/Poseidon satellite altimetry-based global tide model (Egbert et al., 1994), and 76 

atmospheric forcing data from GCMs to determine regional wave and water-level boundary 77 

conditions. These physical processes are dynamically-downscaled using a series of nested 78 

SWAN and Delft3D-FLOW models linked at the coast to tightly-spaced XBeach (eXtreme 79 

Beach: Roelvink et al., 2009) cross-shore profile models. The explicit downscaling approach of 80 

CoSMoS, from a global to local scale, is computationally-expensive and therefore does not lend 81 

itself to simulating long time-series. Instead, the model system is run for scenarios of interest, 82 

such as the annual or 100-yr return level storm event in combination with a series of sea level 83 

rise scenarios. In areas of complex geography and bathymetry, special attention to local 84 

influences on water levels is necessary. For example, storm events for the CoSMoS North-85 

Central California outer coast were selected based on offshore wave conditions, which, after 86 

accounting for cross-shelf refraction and dissipation and orientation of shoreline with respect to 87 

incident wave direction, did not systematically result in greater flood extents with increasingly-88 

intense offshore storms (Erikson et al., in review).  89 

Developing a robust, efficient, yet simple approach for determining relevant storm 90 

scenarios is critical for any workflow that aims to assess local-scale coastal impacts of climate 91 

change. In this paper, we present an approach to downscale global climate models for the 92 

purpose of (1) identifying locations that respond similarly to region-wide (100s of kilometers 93 

(kms)) storms and (2) selecting relevant events for evaluation of local-scale (10s of kms) coastal 94 

storm impacts. Proxies of total water levels, �����, are computed for the 21st century assuming 95 

a linear super-position of estimated wave runup, storm surge and sea level anomalies (fig. 1). k-96 

means clustering techniques are then used to define coastal segments where coastal storms yield 97 

����� of similar return periods (item 2 in fig. 1). Coastal storms within each of these 98 

geographically distinct cells are identified for subsequent deterministic modeling with the 99 

Coastal Storm Modeling System, CoSMoS (Barnard et al. 2014) (item 3 in fig. 1). This new 100 

‘storm selection’ approach is applied to the Southern California Bight which represents a region 101 

of varying shoreline orientations, wave transformation across complex bathymetry, and blocking, 102 

diffraction, and dissipation of wave energy by islands and immediate surrounding bathymetry 103 

(O’Reilly, 1993, Adams et al., 2008, Crosby et al., 2016). The influence of local physical settings 104 

such as these are discussed and shown to affect projected changes in future conditions relative to 105 

the past and to influence the storm selection process on a local scale. The region is heavily 106 

urbanized, with a coastal population of 18 million, and therefore an accurate assessment of future 107 

flood hazards has significant societal implications. 108 

Figure 1. Flowchart summarizing the workflow used to determine TWL proxies at the coast and selecting 109 
future storm events for detailed deterministic modeling of local extreme flood events.  110 
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2 Study Area 111 

The Southern California Bight (Southern California Bight) extends from the U.S. / 112 

Mexican border northward to Point Conception and encompasses ~500 km of partially-protected 113 

open coast shoreline (fig. 2). The active, complex tectonic setting along the Pacific and North 114 

American plate boundary has resulted in the region being fronted by a narrow continental shelf, a 115 

series of islands, pocket beaches backed by semi-resistant bedrock sea cliffs, and a highly 116 

irregular complex bathymetry that hosts a plethora of submerged seamounts, troughs, and 117 

canyons (Christiansen and Yeats 1992; Hogarth et al. 2007). The presence of seamounts, knolls, 118 

canyons, and the Channel Islands significantly alters the deep-water wave climate to a more 119 

complicated nearshore wave field (O’Reilly and Guza, 1993; O’Reilly et al., 1999; Rogers et al., 120 

2007; Adams et al., 2008). The islands block waves approaching from many directions, yielding 121 

a large wave energy shadow zone. Additionally, complex shallow water bathymetry adjacent to 122 

the islands, seamounts, and canyons scatters, focuses, and dissipates wave energy, resulting in 123 

highly variable wave energy distribution patterns along the coast. Though swell dominates 124 

nearshore wave energy, locally-generated seas contribute ~40% to the total wave energy 125 

spectrum (Crosby et al., 2016). To account for these complexities and include contributions of 126 

both swell and local seas, the approach developed for this study employs a numerical wave 127 

model to generate a look-up table that relates offshore wave and wind parameters to nearshore 128 

wave conditions. Tides are mixed, semi-diurnal, with a microtidal diurnal range of 1.7 m 129 

(NOAA, 2017). Offshore waves can reach ~10 m during the most extreme events (CDIP, 2017), 130 

and therefore even with dissipation across the shelf, wave-driven water levels (i.e. set-up and 131 

runup) are still the dominant contributors to extreme coastal water levels across the region, while 132 

storm surge and El-Niño-driven water level anomalies rarely contribute more than ~20-30 cm 133 

each (Flick, 1998; Bromirski et al, 2003).  134 

Figure 2. Overview of study area.  135 

3 Data, Methods, and Models 136 

Total water level proxies (�����) are used as the basis for 1) identifying coastal 137 

segments that respond similarly to region-wide coastal storms and 2) selecting storm events for 138 

further detailed modeling (items 1 through 3 in fig. 1).  139 

����� are calculated assuming linear superposition of wave runup (R2%), storm surge (SS), and 140 

sea level anomalies (SLA),  141 

����� = �	% + �� + ��
   (1) 142 

Variations in water levels due to astronomical tides are not included in Eq. (1) as they are 143 

independent of atmospheric conditions and thus should not, on a first-order basis, affect 144 

identification of coastal cells and storm events (items 2 and 3 in fig. 1). It is recognized that 145 

nearshore wave heights and R2% are affected by tidal stage and currents, and that the phase of 146 
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tides and storm surge can have an amplification effect on non-tidal residuals (Horsburgh and 147 

Wilson, 2007). Such variations and amplifications can be accounted for in detailed local models 148 

(e.g., CoSMoS, Barnard et al., 2014), but are assumed to be sufficiently small to not significantly 149 

affect the storm selection process presented in this work.   150 

Conditional dependencies of R2%, SS, and SLA are accounted for with Eq. (1) through the 151 

use of internally-consistent boundary conditions from a single GCM. Winds, sea level pressures 152 

(SLPs), and sea surface temperatures from the National Oceanic and Atmospheric 153 

Administration (NOAA) Geophysical Fluid Dynamics Laboratory Earth System (GFDL-154 

ESM2M) GCM are used to develop continuous time-series of R2%, SS, and SLA, respectively 155 

(fig. 1). These components are discussed in further detail below.   156 

3.1 Nearshore wave and runup models 157 

Wave runup represents the combination of wave setup caused by gradients in radiation 158 

stress due to breaking waves (e.g., Longuet-Higgins and Stewart, 1964) and swash motions 159 

across the foreshore (e.g., Hunt, 1959; Ruggiero et al., 2001). Wave runup can be empirically 160 

related to deep-water wave conditions. For the purpose of calculating �����, the Stockdon et al. 161 

(2006) formulation is used to compute the 2% exceedance percentile of extreme runup: 162 

�	% = 1.1 �0.35������ ∙ ��)�/	 + 0.5 ∙ ���� ∙ ���0.563��
	 + 0.004 !�/	" (2) 163 

where βf is the beach slope, SWH is the significant wave height, and Lo is the deep-water wave 164 

length, �� = #��	 2%⁄ , �� is the peak wave period, and g is acceleration due to gravity. A 165 

representative slope of βf  = 0.03 was used for all R2% calculations. Foreshore slopes were 166 

calculated at 4,802 tightly-spaced (~100 m in the along-shore direction) cross-shore profiles that 167 

were extracted from a seamless digital elevation model (Danielson et al. 2016). Slopes were 168 

derived between 0.8 m above and below the intersection of MSL following the method described 169 

in Stockdon et al. (2006) (two times the standard deviation of the varying water level) and using 170 

observation data at Ocean Beach, CA (Erikson et al., 2007). Foreshore slopes of all Southern 171 

California Bight transects, excluding vertical cliffs, range from near flat to 0.83 with a mean and 172 

standard deviation of 0.03 ± 0.04. This region-wide representative mean slope was used in this 173 

work so that local storm intensities could be compared equally across the region independent of 174 

local seasonal and short-term variations and changes in foreshore slopes.  175 

SWH and Lo in Eq. (2) are typically taken as back-shoaled deep-water conditions that are 176 

assumed to have accounted for energy loss due to continental shelf refraction and sheltering by 177 

objects such as islands, making it a highly site-specific computation for the Southern California 178 

Bight. The complex bathymetry and wave energy shadowing significantly alter nearshore wave 179 

conditions compared to what they might be along an open, unobstructed coastline, as assumed in 180 

Eq. (2) and other empirical runup formulae. Thus, it is necessary to deterministically transform 181 

deep-water waves to the nearshore. This was done with stationary SWAN (Simulating Waves 182 
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Nearshore, Delft University of Technology) wave model runs. SWAN is a third-generation 183 

spectral wave model specifically developed for the nearshore and includes wave growth, 184 

propagation, nonlinear wave-wave interactions, refraction, dissipation, and depth-induced 185 

breaking (Booij et al., 1999; Ris et al., 1999).   186 

Transformation of deep water waves to the nearshore 187 

A curvilinear SWAN model grid from the U.S./Mexican border to north of Pt. 188 

Conception was created (fig. 2). The offshore extent was defined by locations of U.S. Army 189 

Corps of Engineers Wave Information Study (WIS; http://wis.usace.army.mil/) points located 190 

approximately 25 km offshore; hindcast time-series  of the bulk parameter triplets, ���, ��, and 191 

wave direction, (� from 17 WIS output locations were applied at the open boundaries (red filled 192 

circles in fig. 2). WIS time-series used in this study are shoreward of the Channel Islands (fig. 2), 193 

and include shadowing effects as they are output from a larger model. WIS station bulk forcing 194 

parameters were interpolated at SWAN grid cells that fell between the WIS output points, thus 195 

assuming linear spatial transitions along sections of the open boundary. An exception to this was 196 

along the northern and southern lateral boundaries where bulk parameter forcings from the most 197 

northerly and southerly WIS points were applied uniformly. Although uncertain, it is recognized 198 

that the WIS outputs points may not be spaced finely enough to adequately capture the spatial 199 

heterogeneity of the wave field that passes through the complex offshore topography and islands. 200 

An additional shortcoming of the SWAN model setup lies in the use of bulk parameters rather 201 

than full 2D spectra. The Southern California Bight is subject to wave energy from multiple 202 

generation sources that arrive simultaneously and often result in multi-modal wave spectra 203 

(Hegermiller et al. 2017; Kumar et al. 2017); these multiple swell energy peaks were not 204 

captured with the bulk parameter forcings applied at the open boundaries.  205 

Additional wave energy from locally generated seas were accounted for by applying, 206 

across the entire SWAN domain, spatiotemporally-varying near-surface (10 m height) wind 207 

fields from the 10km California Reanalysis Downscaling (CaRD10; Kanamitsu and Kanamaru, 208 

2007; SIO 2015a) database. Hindcast simulations and testing of model skill were done using the 209 

same CaRD10 database covering years 1980-2010 (Hegermiller et al., 2016).  210 

Horizontal SWAN grid resolution ranged from <10 m to ~800 m with finer resolution 211 

along the coast. The grid was populated with bathymetry data from the 2013 Coastal California 212 

TopoBathy Merge Project (NOAA, 2013) and was run in a stationary mode, assuming a 213 

JONSWAP wave spectral shape, 10° directional spread, and 34 frequency bands ranging 214 

logarithmically from 0.0418 to 1 Hz. Energy dissipation due to depth-induced breaking was 215 

modeled with the Battjes and Janssen (1978) formulation, bottom friction followed the semi-216 

empirical Hasselmann et al. (1973) JONSWAP formulation with a coefficient of 0.038 m2s-3, and 217 

whitecapping was modeled following Komen et al. (1994). Because the model was run in 218 

stationary mode and assumes fully developed seas, wave energy from local seas may be 219 

somewhat over-estimated but this was not explicitly evaluated as part of this study. 220 
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Look-up table relating deep water waves to nearshore equivalents  221 

A look-up table was developed to relate deep water waves to nearshore points in ~10 m 222 

water depth and collocated with the offshore ends of the cross-shore transects from which 223 

foreshore slopes were computed. Three-hourly hindcast SWH, ��, and peak wave directions (Dp,) 224 

at each of the nearshore points computed with the SWAN model were used in combination with 225 

deep-water wind and wave conditions at a single offshore point to build a look-up table. For this 226 

application, hindcasted parameter time-series from the NOAA Climate Forecast System 227 

Reanalysis Reforecast (CFSRR; Chawla et al., 2013) were used since observation time-series 228 

contains gaps and the CFSRR spans a comparatively longer time-period. The offshore CFSRR 229 

point is co-located with California Data Information Program (CDIP; Scripps Institute of 230 

Oceanography; http://cdip.ucsd.edu) buoy 067 (33.2205°N, 119.8807°W).  231 

The look-up-table was developed by binning CFSRR deep-water wave parameters 232 

(���,��, (�) and CaRD10 wind speed ()) at CDIP067. Significant wave height was binned 233 

from 0.5-10.25 m at 0.25 m intervals; �� was binned from 3-24 s at 3 s intervals; (� was binned 234 

from 5-360° at 5° intervals; and ) from 0-24 m/s at 6 m/s intervals. For each combination of 235 

deep-water ���, ��, (�, and ), time indices falling into each bin were identified. These time 236 

indices were used to identify the resultant SWAN modeled ���, ��, �+, (�, and (+ at each 237 

nearshore point for which median values were calculated. This was done for each of the 4,802 238 

nearshore points and all combinations of deep water binned parameters. In this way, the look-up-239 

table was completed by assigning wave and wind conditions at CDIP067 to SWAN-computed 240 

transformations to the nearshore that were performed with WIS boundary wave data.  241 

The look-up-table was used in combination with 3-hourly winds from CaRD10 GFDL-242 

ESM2M and deep water wave time-series to generate nearshore wave climatologies for the 243 

historical (1976-2005) and projected (2012-2100) time-periods. Historical and future deep-water 244 

wave time-series were computed with the WaveWatch III numerical wave model (Tolman et al., 245 

2002; Erikson et al. 2015) driven by native resolution GFDL-ESM2M winds. Skill of the 246 

Wavewatch III GFDL-ESM2M model was evaluated by comparing historical winter (November 247 

through March) wave climatologies to observations offshore of the Southern California Bight for 248 

which results indicate an overall mean model bias (model – observed) of -0.25 m and +1 s, for 249 

��� and �� respectively (Erikson et al., 2015; fig. 5). While this level of accuracy is sufficient 250 

for this application, more robust computations would be achieved using an ensemble of several 251 

GCMs (e.g., Hemer et al., 2013).  252 

For the 21st century climate change simulations, near-surface (10 m height) winds from 253 

the representative concentration pathway RCP 4.5 scenario were used. RCP 4.5 represents a 254 

medium radiative atmospheric forcing with the onset of stabilization by mid-century reaching an 255 

increase in total global radiation of +4.5 MW/m2 by the year 2100, relative to pre-industrial 256 

(1850) conditions (Hibbard et al., 2007; Moss et al., 2010). RCP 4.5 was selected over the higher 257 

emissions scenario RCP 8.5 because it has been shown that the former projects slightly greater 258 

��� in the vicinity of the Southern California Bight (Erikson et al., 2015). 259 



 

8 

 

3.2 Non-tidal residuals and decomposition of storm surge and sea level anomalies  260 

The combination of SS and other sea level anomalies is often referred to as non-tidal 261 

residuals (NTR), which are traditionally computed as the difference between measured and 262 

predicted astronomical tides. However, produced through simple subtraction, NTRs can be 263 

corrupted by timing errors and datum shifts resulting in tidal energy remaining in simple NTR 264 

computations (Pugh, 1987; Haigh et al., 2013). Additionally, the aim here is to account for short 265 

term (hours to days) wind/pressure-induced SS and longer term (days to months) water level 266 

anomalies caused by basin-scale climate variability such as the El Niño Southern Oscillation 267 

(ENSO). Therefore, to decompose the NTRs into these separate components, we remove the sea 268 

level anomalies (SLA) from the water levels, and then remove the tidal signal using a slightly 269 

modified approach of the spectral method described by Bromirski et al. (2003) to produce SS. 270 

  Monthly mean sea levels were calculated by averaging each month of every year from 271 

de-trended, de-meaned water level observations. The seasonal cycle was then subtracted from the 272 

monthly mean sea levels. The seasonal component was obtained by fitting a multi-linear 273 

regression model to the de-trended, de-meaned data. Annual and semi-annual signals were 274 

modeled using ,� sin�2%0) + ,	 cos�2%0) + ,3 sin�4%0) + ,4 cos�4%0) , where t is the time in 275 

years and α are empirical coefficients. Both the seasonal cycle and the SLA were removed from 276 

the water level observations, resulting in a high frequency signal. Successive two-year blocks of 277 

the remaining water levels were transformed into the frequency domain and processed with a 278 

50% overlap. Tide bands were removed and replaced with amplitude and phase estimates 279 

consistent with the concurrent non-tide continuum (Bromirski et al., 2003; Serafin and Ruggiero, 280 

2014). The spectrum was transformed back to the time domain and 25% of the data was removed 281 

from each end of the overlapping blocks to minimize window edge effects. This method resulted 282 

in a SS time-series excluding energy at tidal frequencies.  283 

Decomposition of NTRs was computed from tide gauge observations at La Jolla 284 

(#9410230) and Los Angeles (#9410660) (fig. 3; Table 2), each representing the approximate 285 

south and central sections of the study area (fig. 2). The observational record length at Santa 286 

Barbara, located near the north end of the study area, was deemed too short (total of 10 years, 287 

1996-1997 and 2005-present) to represent a full climatology, which is best represented with 30+ 288 

years of data.  289 

Table 2. Summary statistics of hourly water level data measured at NOAA tide stations. 290 

  
Time period of 

record 
% missing 

data 
Max storm surge 

(m) 
Max SLA (m) 

Tide 

range 

(m) 

La Jolla 

(9410230) 
01 Aug 1924 – 

31 Dec 2014 
6.5 0.39 (18 Jan 1978) 0.20 (Nov 1997) ±1.13 
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Los Angeles 

(9410660) 
29 Nov 1923 - 

31 Dec 2014 
1 0.40 (02 Mar 1983) 0.18 (Nov 1997) ±1.16 

 291 

  292 

Figure 3. Measured water levels and decomposed time-series of storm surge and of mean monthly sea level 293 
anomalies. 294 

 295 

3.3 Empirical storm surge model  296 

Storm surge is the rise of water caused by strong onshore winds and a drop in 297 

atmospheric pressure. These long waves have characteristic timescales of several hours to one 298 

day or more and wavelengths approximately equal to the width of the storm cell, typically 299 

between 150 and 800 km (CIRIA et al., 2007).   300 

Maximum storm surge levels were found to be 0.39 m and 0.40 m at La Jolla and Los 301 

Angeles, respectively (Table 2). The maxima are very similar at these two sites but occurred 302 

during different storms in January 1978 and March 1983 at La Jolla and Los Angeles, 303 

respectively. Both extremes are associated with El Niño events but corresponding SS levels were 304 

only 25% to 50% as high at the opposing site during three days preceding or following each 305 

storm, indicating significant spatial variability. 306 

The inconsistency of SS response to individual storms is related to differences in storm 307 

patterns and shoreline orientation at the two sites. The La Jolla tide gauge is situated on a 308 

northwest-facing coast, whereas the Los Angeles gauge is oriented southwest (fig. 2) and thus a 309 

given wind direction will produce different wind-driven SS elevations at the two sites. 310 

Additionally, along-shore variations in SLPs will impart variations in SS due to the inverse 311 

barometer effect (IBE). The March 1983 event for which maxima were recorded at Los Angeles, 312 

for example, experienced SLPs below 99 kPa at Los Angeles and were consistently about 1 kPa 313 

higher at La Jolla. The difference in SLPs accounts for approximately 10 cm of the higher SS at 314 

Los Angeles as calculated by the inverse barometer effect, IBE = ∆6 �7#)⁄ , where ∆6 is the 315 

difference in atmospheric pressure (101.7 kPa – instantaneous pressure), 7 is saltwater density (= 316 

1,025 kg/m3), and g is the gravitational acceleration (9.81 m/s2). Calculations of IBE for the 317 

entire available time-series shows that in cases where both winds and low SLPs contribute to 318 

positive surges, IBE accounts for ~50% of the total. 319 

Though IBE is simple to calculate, the conditional dependency between wind-induced SS 320 

with shoreline orientation and wind duration, speed, and direction is not straight forward. Here 321 

we assume that nearshore SWHs implicitly represent wind speed, direction, duration and 322 

shoreline orientation through wave growth, propagation, and refraction across the shelf to the 323 
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coast. Using the hindcast look-up-table-generated SWHs and SLPs from the CaRD10 database 324 

near the La Jolla tide gauge, a multi-linear regression model was developed,  325 

�� = 89 + 8� ∙ ln����) + 8	;∆6 �7#)⁄ <  (2) 326 

where the second term represents wind-induced SS and the last term represents changes in water 327 

levels due to IBE. To ensure the use of independent storms for development of the empirical 328 

storm surge model, events were first defined as those exceeding the 95th percentile (7.4 cm) and 329 

then ‘declustered’ by three days (Bromirski et al., 2003 (fig 7); Mendez et al., 2007; Ruggiero et 330 

al., 2010). Other exceedance levels were tested and found to yield similar results. The empirical 331 

coefficients were found to be C0 =0.0474, C1 = 0.0145 and C2 = 1.2 via a least squares linear fit 332 

(R2 = 0.15; RMSE = 0.06 m). Coefficients for the second term were fit using the SS time-series 333 

after removing the IBE. The low coefficient of determination is largely due to over-estimated 334 

setdown of ~5% of the data points in the observed range of 0 to -15 cm for which the model 335 

predicts -15 cm to -40 cm (not shown). Because affected data within this range is relatively small 336 

and because setdown is of less importance than setup in the context of this study where we seek 337 

extreme water levels conducive to flood hazards, we feel that these points do not significantly 338 

deter from the overall model fit. Although untested, it is expected that a wider continental shelf 339 

would produce higher C1 and C0 because of the limited rate of volumetric return flow. 340 

Comparison of modeled SS to observed SS 341 

SS measured at the La Jolla tide (LJ) gauge were used to develop the empirical storm 342 

surge model (Eq. 2), whereas SS measured at the Los Angeles (LA) tide gauge (9410660) were 343 

used to evaluate model skill. The choice of station data for model development (LJ) and model 344 

testing (LA) was arbitrary and found to make little difference with regard to the coefficients if 345 

the stations were switched. The range of the observation data are similar at La Jolla (used to 346 

develop the model) and Los Angeles (used to validate the model), however the distributions and 347 

histograms differ, particularly in that there are more frequent high events at the Los Angeles 348 

gauge and more frequent low events at the La Jolla gauge (fig. 4A). A hindcast time-series 349 

(1980-2014) for Los Angeles was calculated with Eq. (2), SWHs at nearshore point 2084 using 350 

the look-up-table, deep water observation data at CDIP067, and SLPs from CaRD10. A scatter 351 

plot of modeled and observed values indicate that the model does a reasonable job capturing the 352 

more frequent high events and fewer low events at the Los Angeles gauge, and that it replicates 353 

upper quantile SS levels above 0.25 m (fig. 4B; R2 = 0.21; RMSE = 0.06 m).  354 

Figure 4. Measured and modeled storm surge levels.  355 

 356 

3.4 Empirical sea level anomaly model 357 

Sea level anomalies are variations in water level forced by meteorological and 358 

oceanographic processes unrelated to storms (Theuerkauf et al., 2014). Elevated SLAs are often 359 

observed in conjunction with El Niño (Flick, 1998; Storlazzi and Griggs, 1998; Bromirski et al., 360 
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2003), which can yield water levels 10-20 cm above normal for several months (Cayan et al., 361 

2008, 2009). Climate indices such as the North Atlantic Oscillation (NAO), Southern Oscillation 362 

Index (SOI), and Pacific-Decadal Oscillation (PDO) have been used to explain some of the 363 

variability in sea level (Mendez et al. 2007; Cayan et al. 2008; Serafin and Ruggiero 2014) and 364 

represent large-scale variability in the atmosphere and ocean over decadal and interdecadal time 365 

scales. 366 

In an effort to maintain simplicity, correlations of SLAs with sea surface temperature 367 

anomalies (SSTAs) were developed from observations (1981 - 2014). Both observation and GCM 368 

SSTAs are readily available and are physically linked to SLAs directly through thermal expansion 369 

and indirectly through changes in large-scale wind patterns. SSTAs were computed by 370 

subtracting out the seasonal signal and long-term mean (1971-2000, Reynolds et al., 2002) from 371 

satellite-derived point-location SST time-series for 1981-2014 (NOAA/OAR/ESRL PSD). The 372 

resulting regression model has the form,   373 

��
 = 89 + 8� ∙ SSTA  (3) 374 

where the empirical coefficients C0 and C1 were found to equal 0.0546 and 0.0745, respectively, 375 

by a least squares linear fit through the upper envelope of the mean monthly SSTA and SLA 376 

measured at La Jolla (fig. 5; R2 = 0.83). The upper envelope SLA was defined by the maximum 377 

SLA within 0.25o SSTA bins from -3.0oC to +3.0oC. A fit through the upper envelope, rather than 378 

all of the data, errs conservatively high by assuring a positive SLA for higher SSTAs. Due to 379 

scatter in the data and relatively small SLAs, a fit through all the data would yield only a slight 380 

positive SLA (~0.10 m) for the maximum observed SSTA, which is well below observed 381 

extremes.  382 

Because of the coarse SST grid resolution (1° x 1°), La Jolla and Los Angeles are located 383 

at adjacent grid points with nearly identical SSTs and thus evaluating model skill near Los 384 

Angeles with coefficients developed for La Jolla serves little purpose. The similarity between the 385 

two sites is supported with measured maximum mean monthly SLAs, which were only slightly 386 

higher at La Jolla (0.20 m) than at Los Angeles (0.18 m) and were both associated with the 387 

November 1997 El Niño. 388 

Figure 5. Sea level anomalies.  389 

3.5 Identification of offshore storm events and similarly responding coherent coastal 390 

segments  391 

Coastal segments (‘cells’) that experience water level extrema of a specified return period 392 

in response to specific offshore storm conditions were defined by analyzing the projected TWLpx 393 

time-series at each cross-shore transect and grouping the corresponding offshore wave and wind 394 

conditions using cluster analyses. For example, to find regions that experience different absolute 395 

values of 20-year coastal storm-induced water levels (a total water level with a 1/20 = 5% chance 396 

of being exceeded in any one year) in response to different coastal storm conditions, four steps 397 
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were taken. First, the 20-year recurrence �����@  was calculated at each cross-shore transect. For 398 

simplicity, the 2012 through 2100 year projected time-series were complemented with TWLpx 11 399 

years of data from 2012 to 2022 to generate full 100-year long time-series. The 3-hourly 100-400 

year long time-series were de-clustered so that only peak events at least 3 days apart were 401 

analyzed. Using an r-largest value of 3 events per year (e.g., Coles 2001), the top 300 events at 402 

each cross-shore transect were sorted, ranked and assigned cumulative probabilities from which 403 

the relevant return period and levels were attained. Second, offshore wave (SWH, ��, (�) and 404 

wind forcing ()A, )B@C) associated with each of the 20-year events at each cross-shore transect 405 

was identified. Wave and wind conditions were extracted from the same time-series that were 406 

used to generate the look-up-table-derived wave conditions, SLAs, and �� in the nearshore 407 

(Section 3). Lastly, the offshore wave and wind conditions associated with each of the cross-408 

shore transects and the 20yr ����� were clustered using a k-means algorithm (Arthur and 409 

Vassailvitskii 2007). K-means treats each observation as an object having a location in parameter 410 

space and finds a partition in which objects within each cluster are as close to each other as 411 

possible, and as far as possible from objects in other clusters. Each cluster is defined by its 412 

member objects and their centroid which is the minimum sum of distances from all objects in 413 

that cluster. Here, clustering was performed with a 5-dimensional array of normalized offshore 414 

conditions, D = ;���E , ��
E , (�

E , )A
E, )B@C

E <, where the superscript represents the jth storm. 415 

Normalization was achieved by dividing each variable with the maximum corresponding time-416 

series value so that each variable scaled between 0 and 1 and was equally weighted. Upon 417 

completion of the clustering, the centroids were dimensionalized by applying the opposite 418 

transformation of the normalization. Distances were calculated using the squared Euclidian form. 419 

Clustering was done 1,000 times, each with different randomly selected initial centroids using k-420 

means++ seeding (Arthur and Vassilvitskii, 2007 cited in Mathworks® Matlab); the one with the 421 

lowest total sum of distances was saved in order to achieve robust representations of groupings 422 

and centroid locations. Following the described approach, offshore storm conditions and coastal 423 

cells were grouped for the 1-yr, 20-yr, and 100-yr ����� return periods. 424 

4 Results 425 

Winds, sea level pressures, and sea surface temperatures from GFDL-ESM2M under the 426 

RCP 4.5 climate scenario served as boundary conditions to the models outlined in the previous 427 

section and were used to generate continuous historical and projected time-series of R2%, SS, 428 

SLA, and ����� at each of the cross-shore transects within the Southern California Bight. Each 429 

of these components are discussed in the following sub-sections. 430 

4.1 Wave runup 431 

For computation of R2% (Eq. 1), wave heights and peak periods were downscaled to the 432 

local level using the look-up-table and times-series of offshore wind and deep-water wave 433 

conditions at CDIP067 (Section 3.1). Bight-wide averaged historical R2% levels are 0.64 m with a 434 
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maximum of 1.97 m, assuming a representative foreshore slope of βf  = 0.03 (fig. 6A). Three 30-435 

year future time periods are compared to the historical climatology: start (2012-2040), middle 436 

(2041-2070), and end (2071-2100) of the 21st century. Bight-wide averaged R2% during each of 437 

the projected time periods are nearly identical to the historical time period (0.65 m). Time-period 438 

maxima are projected to be highest during the mid-part of the century with a bight-wide average 439 

15% increase (2.22 m versus 1.97 m).   440 

Figure 6. Bight-wide averaged time-series of historical and projected coastal water levels using 441 
downscaled GFDL-ESM2M, RCP4.5.  442 

Changes in extreme R2%, calculated as the percent change of the 98th percentile 443 

exceedances at each cross-shore transect between the future and historical time periods, are 444 

evaluated spatially and temporally in figure 7. Results indicate an overall increase of 1.2% (range 445 

from -1.0% to 3.1%) in 98th percentile R2% during the start of the 21st century and overall little 446 

change (-0.1%) during the mid-part of the century followed by greater decreases (-1.7%) by the 447 

end of the century. The largest increases are projected for the Los Angeles/Long Beach coast 448 

where 98th percentile R2% is projected to increase by as much as 4.5% and 4.3% for the mid- and 449 

end-century time-periods, respectively. Greatest decreases in extreme R2% are projected for mid 450 

San Diego, mid Los Angeles, and parts of Santa Barbara counties. San Diego exhibits the largest 451 

decreases approaching -4.5%. The decrease is primarily related to projected decreases in extreme 452 

SWHs and with (� from more southerly directions.  453 

Figure 7. Percent change of extremes between three 30-year projected time-slices and the historical 454 
time-period (1976 – 2005).  455 

 456 

4.2 Storm surge 457 

Storm surges (Eq. 2) were estimated with the same time-series of SWHs as used for 458 

calculation of R2%, and SLP time-series extracted from the GCM ocean grid point closest to the 459 

study area. SLPs from this single grid point were used to estimate the IBE component of the total 460 

storm surge signal, calculated as the deviation from the average historical (1976-2005) SLP 461 

(101.83kPa). Because a single SLP time-series was used, the IBE contribution was spatially-462 

uniform across the Bight, in contrast to the wind-induced component of the total storm surge 463 

which varies with alongshore variations in SWHs. 6-hourly GCM SLPs were linearly 464 

interpolated to the 3-hour time intervals of the SWH time-series prior to computing the total SS.   465 

Bight-wide averaged historical SS range from -0.26 m to +0.34 m. The projected time-466 

series exhibit similar ranges from -0.24 m to +0.35 m with no apparent trend (fig. 6B). Extreme 467 

(98th percentile) SS at individual cross-shore transects are projected to decrease by approximately 468 

-3.2%, -1.6%, and -6.8% during the start, middle, and end of the 21st century as compared to the 469 

historical time period (fig. 7B).  470 

 471 
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4.3 Sea level anomalies 472 

SLAs were first calculated on a monthly time scale, as the model is based on monthly 473 

anomalies of SSTs (Eq. 3), and then linearly interpolated to the same 3-hour time intervals as SS 474 

and R2%. Four distinct regions of identical SLA variations were computed from SST time-series 475 

at four grid points within the Bight on the GCM ocean grid; anomalies were calculated relative to 476 

the long-term mean of each of the three future time-periods. The four regions are segmented into 477 

cross-shore transects 1 to 1360, 1361 to 2593, 2594 to 3720, and 3721 to 4802 (fig. 7C).  478 

Mean monthly historical SSTs range from 15.2°C in January to 25.3°C in September and 479 

are on average 1.4 °C (range 0.3°C to 2.5°C) warmer in the south compared to the north part of 480 

the Bight (fig. 8). Mean monthly SSTs are projected to be 0.7°C warmer by the end of the 21st 481 

century averaged over all months (range 0.3°C to 1.1°C).  SSTs are projected to increase most 482 

dramatically during the summer months. For example, September monthly means from 2012 to 483 

2100 exhibit a linear increase of 0.02 °C / yr (r = 0.49; p-value < 0.005). The linear increase is 484 

also reflected in projected SLAs since the empirical model in Eq. (3) is a linear function of SST 485 

anomalies (fig. 6C). Extreme (98th percentile) SLAs are projected to reach 0.22 m to 0.24 m by 486 

the mid and end of the century, compared to 0.16 m to 0.18 m during the historical time-period 487 

and the start of the 21st century (2012-2040) reflecting increases >30% (fig. 7C). Previous studies 488 

have shown that SST trends of the GFDL-ESM2M are commensurate with other GCMs (e.g., 489 

Zhang et al, 2014), and thus, while mean monthly SSTs within the Southern California Bight 490 

from other GCMs were not specifically calculated for this study, the noted trends are likely 491 

representative of projected conditions.  492 

Figure 8. GCM modeled monthly mean SSTs within the Southern California Bight.  493 

 494 

4.4 TWL proxies  495 

����� were calculated at 4,802 discrete points along the 10 m isobath within the 496 

Southern California Bight from the linear summation of R2%, SS, and SLA (fig. 7D). The relative 497 

percent change in extreme TWLpx is similar to R2% for the first part of the century (~2% 498 

increase), but by the middle and end of the century, SS and SLA play a larger role in the change 499 

signal. The greatest relative change is projected to occur during the mid-part of the century when 500 

extreme TWLpx are estimated to be >5% greater at some locales. Increases are projected to be 501 

less pronounced at the southern and northern ends of the Bight, largely due to the lower 502 

projected R2% along those coastal stretches (fig. 7A).  503 

4.5 Storm events and similarly responding coherent coastal segments 504 

Clustering of the offshore wave and wind conditions with the corresponding locally 505 

derived 1-year, 20-year, and 100-year return period TWLpx extremes shows that a number of 506 

different storms of varying intensity and direction are responsible for the annual and 20-year 507 

events, whereas the coastal response is more spatially uniform if considering the 100-yr event 508 
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(fig. 9, Table 4). That is, along most sections of the Southern California Bight, the local impacts 509 

of a 100-yr coastal event are likely to occur from the same offshore storm (red hued colors in fig. 510 

9, Table 4C), but the less severe 1-yr local coastal flood event is likely to occur from many 511 

different storms (green hued colors in dig. 10, Table 4A). Annual exceedance levels for more 512 

than 70% of the Bight (computed as the number of cross-shore transects that fall within a given 513 

grouping or storm divided by the total number of cross-shore transects, last columns in Table 4) 514 

is represented by 5 storms, whereas nearly 80% of the region is represented by 4 storms for the 515 

less frequent but higher intensity 20 yr RP. For the 100-yr RP, a single storm, with a clustered 516 

centroid at ���= 7.04 m, �� = 19s, (� = 283°, )A = 7.1 m/s, and )B@C = 308° captures 95% of 517 

the region. Thus, the return period threshold that delivers near uniform response intensities is 518 

somewhere between the 20-yr and 100-yr return period.  519 

Figure 9. Coastal cells that respond similarly to coastal storms. 520 

The weighted means of SWH, ��, and )A (calculated as G̅ = �∑ J@G@
K
@L� ) ∑ J@

K
@L�⁄ , where 521 

x is the variable in question, w is the percent area affected, the subscript i is the storm number, 522 

and  N is the total number of storms) suggest that seas and winds are relatively more important 523 

with regards to the ����� for less severe but more frequent storms compared to the higher 524 

intensity coastal storms. This is evidenced by the stronger wind speeds (8.1 m/s < )A < 8.3 m/s) 525 

of the 1-yr and 20-yr return periods  compared to the 100-yr return period winds (7.3 m/s) and 526 

that conversely, ��� and �� increase with increasing storm severity, from 4.44 m to 7.00 m and 527 

from 15 s to 19 s for the 1-yr and 100-yr RPs, respectively. Additionally, the northwesterly 528 

along-coast winds of the 100-yr return period are shadowed with regards to local wave 529 

generation compared to the southwesterly winds (367°-350°) of the 1-yr and 20-yr return periods  530 

which are directed onshore (arrows in fig. 9). Exceptions to this exist, particularly along the 531 

west-facing coast of San Diego and extreme northern part of the study area near Point 532 

Conception. 533 

 534 

  535 
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Table 4A. Projected offshore wave and wind conditions that result in 1-yr return period (RP) 536 

coastal storm events along the coast of the Southern California Bight. 537 
RP 1 yr 

Event 
SWH 
(m) 

�� (s) 
Dp 

(deg) 
)A (m/s) 

Udir 

(deg) 

Area 

affected 

colors in 

fig. 9 

Storm 1 3.92 16 286 5.7 312 16%   

Storm 2 4.15 16 289 5.0 58 15%   

Storm 3 5.31 15 293 11.4 294 14%   

Storm 4 4.42 13 279 11.1 230 13%   

Storm 5 5.08 16 293 7.3 334 13%   

Storm 6 4.87 16 290 5.9 228 12%   

Storm 7 3.40 13 286 10.2 312 9%   

Storm 8 4.66 13 288 16.2 304 5%   

Storm 9 2.90 14 262 4.0 211 2%   

Range 
3.40 to 

5.31 

13 to  

16 

279 to 

293 

5.0 to 

16.2 

58 to 

334 
  

Wtd. mean 4.44 15 287 8.3 250   

 538 

Table 4B. Same as previous but for 20-yr RP. 539 

RP 20 yr 

Event 

SWH 

(m) 
�� (s) Dp (deg) 

)A 

(m/s) 

Udir 

(deg) 

Area 

affected 
colors in 

fig. 9 

Storm 1 6.24 18 288 7.8 274 30%   

Storm 2 6.42 18 301 12.2 335 22%   

Storm 3 6.32 16 279 4.9 89 14%   

Storm 4 5.85 18 281 5.7 166 12%   

Storm 5 6.08 18 289 5.9 211 10%   

Storm 6 3.74 14 291 11.6 310 6%   

Storm 7 6.96 16 277 9.4 151 4%   

Storm 8 2.90 16 284 2.8 229 3%   

Storm 9 4.32 17 288 10.8 143 1%   

Range 
2.90 to 

6.96 

14 to   

18 

277 to 

301 

2.8 to 

12.2 

89 to 

335 
  

Wtd. mean 6.00 17 289 8.1 237   

 540 

Table 4C. Same as previous but for 100-yr RP. 541 

RP 100 yr 

Event 
SWH 
(m) 

�� (s) 
Dp 

(deg) 
)A (m/s) 

Udir 

(deg) 

Area 

affected 

colors in 

fig. 9 

Storm 1 7.04 19 283 7.1 308 95%  

Storm 2 6.96 16 277 9.4 151 3%  

Storm 3 5.64 20 295 12.7 344 2%  

Storm 4 5.90 17 281 6.8 319 <1%  

Storm 5 5.86 18 281 5.7 166 <1%  

Storm 6 6.09 18 290 5.9 209 <1%  

Storm 7 6.83 17 306 12.5 323 <1%  

Storm 8 - - - - - 0%  

Storm 9 - - - - - 0%  

Range 
5.64 to 

7.04 

16 to  

20 

277 to 

306 

5.7 to 

12.7 

151 to 

344 
  

Wtd. mean 7.00 19 283 7.3 304   

 542 
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A total of 9 mutually exclusive clusters were initially used to identify the coherent coastal 543 

sections. This number of clusters was settled upon after incrementally reducing the number of 544 

clusters such that no single cluster represented less than 2% of the coastal area affected for the 1-545 

year return period events, the storm-case with the highest degree of variability. However, for 546 

detailed computationally costly numerical modeling it is often necessary to further reduce the 547 

number of relevant events so that overall computation time is manageable yet ensuring coastal 548 

hazard vulnerability is adequately captured. To this end, we used a combination of 1) the result 549 

that fewer storms are required for representation of higher intensity storms (see previous 550 

paragraphs), 2) evaluation of the range in offshore forcing variables (e.g.,~10° variation in (� of 551 

most prominent 1-yr and 20yr return period storms), and 3) the Silhouette graphical aid of 552 

Rousseuw (1987) which allows for assessment and selection of group exclusivity. The 553 

combination of these three considerations resulted in re-grouping the 1-yr and 20-yr return 554 

period storms into 3 and 2 groups, respectively. Re-grouping of the 100-yr return period was not 555 

done since 95% of the area is represented with one single event (Table 4C).  556 

Storm dates for the 1-yr and 20-yr return periods  were identified by performing a 557 

Quickhull best match search (Barber et al. 1996) of the storm group centroids with the 100-year 558 

long time-series of the 5 parameters (D = ;���M , ��M, (�M , )AM , )B@C
M <, where t is the time-step). 559 

Maximum SWH and )A within ±12 hours of the identified storm date were then extracted in 560 

addition to ��, (� and )B@C associated with those maxima. All 5 storm dates (3 for the 1-yr and 2 561 

for the 20-yr RP) are between the months of December through March, as is expected for intense 562 

storm activity in the study area (Table 5). Resultant SWHs range from 4.19 m to 4.90 m and from 563 

5.86 m to 6.13 m for the 1-yr and 20-yr RPs, respectively, commensurate with the weighted 564 

means of the 9-member storm grouping (Table 4). �� and (� behave similarly ranging from 13 s 565 

for the 1-yr return period to 18 s for the 20-yr return period and with wave incidence angles from 566 

west-northwest (281° to 292°). Winds range from 5.7 m/s to 11.5 m/s, with one wind direction 567 

emanating from the northwest and one from the southwest. The northwesterly winds (322°) of 568 

the 20-year event are associated with the higher SWH (6.13 m) of the two storms. In contrast, 569 

higher SWH during the 1-year event are linked to onshore winds from the southwest quadrant, 570 

again indicating the increased importance of local seas on ����� for the more frequent but less 571 

intense storms.  572 

 573 

Table 5. Storm dates and offshore conditions for which the GFDL-ESM2M RCP4.5 model 574 

captures local annual and 20-yr return period storms in the Southern California Bight.  575 

Storm dates 
SWH 
(m) 

�� (s) Dp (deg) )A (m/s) 
Udir 

(deg) 

Area 

affected 

R
P

  
  

  
  

  
  
 

1
 y

r Mar 2020 4.39 16 284 7.5 284 42% 

Dec 2056 4.90 13 292 11.5 242 39% 

 Jan 2097 4.19 17 292 5.7 82 19% 

R P
  

Feb 2095 6.13 18 292 11.1 322 58% 



 

18 

 

Feb 2025 5.86 18 281 7.1 177 42% 

 576 

To test the sensitivity of the storm selection process and identification of coherent coastal 577 

cells on availability of foreshore slope data, which is often not available across large stretches of 578 

coast, the same scripts were applied to TWLpx consisting of runup elevations calculated using 579 

transect-specific foreshore slopes (as used in the runup equation). Clustering the data into 9 580 

mutually exclusive clusters yields identical results to those in Table 9C for the 100-yr storm 581 

using a region-wide averaged slope at all transects. For the 1-yr and 20-yr return period storms, 582 

the overall bulk statistics (range and averages) are very similar for the two cases; a mean 583 

difference of ∆��� = 14 cm, ∆�� = 0 s, and ∆(� = 3° for the 1-year event and a difference of  584 

∆��� = 11 cm, ∆�� = 0 s, and ∆(� = 1°  degrees for the 20-year event. The differences are 585 

greatest for the 1-year return period storms across ~20% of the region where differences in ��� 586 

and (� are as much as 60 cm and 20°. 587 

Reducing the number of storm clusters to 3 and 2 for the 1-year and 2-year storm events, 588 

respectively, the difference between the two cases reduces to a maximum absolute ��� bias of 589 

30 cm and 14 cm for the 1-year and 20-year return periods. The difference in �� and (� are < 1 s 590 

and <4°, respectively and the area distributions are about the same (differences in the spatial 591 

maps are difficult to distinguish and thus is not shown). Thus, the use of a varying slope does 592 

slightly change the identification of offshore storm conditions, particularly for the less severe 593 

annual return period storm. But the areas affected are small (<20%) and the differences reduce 594 

when the number of storms are restricted.   595 

5 Discussion  596 

Employing the GFDL-ESM2M RCP 4.5 climate scenario, extreme TWLpx are projected 597 

to be at their highest levels within the Southern California Bight during the middle of the 21st 598 

century (fig. 7D). Higher TWLpx are also projected for early in the century, but by the end of the 599 

century, TWLpx are only marginally greater compared to the recent past. Increases in mean R2% 600 

are primarily attributed to increasing average ��. The projected increase and decrease of  �� and 601 

SWH, respectively, are consistent with previous studies which have found similar trends in deep 602 

water locales offshore of Southern California using other GCM winds and global (Hemer et al., 603 

2013) or regional (Graham et al., 2012) scale wave simulations. Graham et al. (2012) attributed 604 

decreasing SWH to reductions in wind speed along the southern flank of the main core of the 605 

westerlies. Increasing  �� is thought to be a result of increasing wave energy in the southern 606 

hemisphere (Semedo et al. 2013; Erikson et al. 2015).    607 

R2% accounts for more than 85% of the extreme TWLpx making it the largest contributor 608 

to storm generated flooding along this high energy open coast (Table 6). SLA accounts for nearly 609 

10% of the TWLpx signal with the remainder (~3.5%) attributable to SS. R2% is however quite 610 

sensitive to the foreshore slope and thus its relative contribution compared to SS and SLA varies. 611 

Under identical conditions but with prevailing steeper foreshore slopes, of for example βf = 0.15, 612 
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R2% contributions account for all but 3% to 4% of the extreme TWLpx. The same computation 613 

using real-valued foreshore slopes for each cross-shore transect (‘varying βf’ in Table 6) and then 614 

averaging across all sites yields results similar to using the regionally averaged slope.  615 

For identification of individual storm events and affected coastal sections, use of real-616 

valued foreshore slopes as opposed to the region-wide average, has no effect on the more 617 

extreme 100-yr event but identifies different storms for ~20% of the area when seeking 618 

identification of 1-yr storm events. However, the site-specific foreshore slopes used here were 619 

extracted from elevation models compiled from single time-points, and because slopes vary 620 

seasonally and inter-annually, these site-specific foreshore slopes might not be the best proxy for 621 

when annual storms occur. Thus, for most accurate results of lower intensity (e.g., 1-year return 622 

period) storms, foreshore slopes that are representative of conditions prior to such events would 623 

be most useful but often very difficult to obtain and thus a regional average might still be the best 624 

option.  625 

The fact that R2% dominates the TWLpx signal and hence the flood potential, a result 626 

consistent with the recent findings of Serafin et al. (2017), highlights the importance for accurate 627 

representations of the wave climate and dynamic changes in coastal bathymetry. Though the 628 

wave climate is dynamically downscaled to the local level, changes in wave growth, refraction, 629 

shoaling and subsequent wave heights due to increasing water depths from sea level rise, storm 630 

surge, and other sea level anomalies are not accounted for in the calculations of SWH and  ��, 631 

which were extracted at the 10 m isobath and used to calculate runup for the TWLpx. Such effects 632 

could be included by generating separate wave transformation look-up-tables (Section 3.1) using 633 

a set of pre-determined sea level rise scenarios commensurate with the projected SLR curve of 634 

the GCM used in the study and discrete rises in water levels to account for SS and SLA. 635 

However, because runup is the dominant variable, accounting for >85% of the TWLpx in this 636 

region, any reduction of this parameter would likely still dominate the storm selection and 637 

identification of coherent coastal sections. Moreover, with an increase in SLR, SWHs and 638 

consequently runup will mostly increase due to the greater depth and distance over which wave 639 

growth can occur, further increasing the relative importance of SWH on the storm identification 640 

results.  641 

Table 6. Percent contributions of individual components to extreme TWLpx. 642 

[computed from hourly time-series spanning 2012 – 2100 and exceeding the 98th percentile TWLpx] 643 
 Foreshore slope 

 βf = 0.03 βf = 0.15 varying βf 

R2% 86.6 ± 0.9 96.7 ± 0.4 90.4±1.9 

SS 3.5 ± 0.4 1.1 ± 0.2 3.7±0.5 

SLA 9.9 ± 0.5 2.2 ± 0.3 5.9±1.4 

 644 

For the GCM and climate change scenario examined here (GFDL-ESM2M, RCP4.5), 645 

extreme (98th percentile) SS are projected to decrease; most of the decrease is attributable to 646 
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inverse barometer effects resulting from changes in low SLPs. Using observation data, Cayan et 647 

al. (2008) showed that the greatest influence on short period non-tidal sea level variability in La 648 

Jolla was due to IBEs and commensurate with the findings of this study. The frequency of 649 

occurrence of extreme low SLPs, computed as those levels that dip below the 2% historical low 650 

of 100.795kPa, are projected to decrease from occurring 1% of the time during the historical 651 

time-period to 0.7% of the time by the end of the century. While uncertain, this may be a 652 

reflection of an apparent poleward shift of low pressure system storm tracks (Yin, 2005; Hu and 653 

Fu, 2007), a trend which appears to have been amplified during recent El Niño events (Barnard 654 

et al., 2017). 655 

SLAs are found to contribute approximately 10% to the extreme TWLpx using the linear 656 

relationship developed for this study. The ‘SLA model’ is based on a simple linear but strong (R2 657 

= 0.83) relationship between local SST anomalies and upper envelope SLAs. It is noted that the 658 

relatively greater contribution of ��
 to the ����� compared to �� might well be because the 659 

upper ��
 envelope was used to develop the empirical model, whereas a more conservative 660 

model was developed for ��.  661 

Winter storms, extreme waves, flooding, significant coastal erosion, and elevated SLAs in 662 

Southern California are strongly linked to El Niño events (Dettinger et al. 2001; Barnard et al., 663 

2015). El Niño generation and teleconnections are simulated in GCMs (Bellenger et al., 2014; 664 

Mentashi et al., 2017) and while SST anomalies are generally indicative of El Niño events (Lau 665 

and Nath, 1996), the linear model would likely benefit from further developments, through for 666 

example, the use of additional variables, inclusion of climate indices, and/or perhaps applications 667 

of neural networks or genetic algorithms.  668 

Via an iterative process it was found that at least 25 (= 9 + 9 + 7, per Table 4) separate 669 

storm events are responsible for the 1-yr, 20-yr, and 100-yr return period TWLpx along the shores 670 

of the Southern California Bight. A desire for comprehensiveness stipulates that detailed 671 

deterministic modeling of all the events should be conducted to fully represent all storm levels 672 

and locales, however this is not always feasible and a smaller number of representative storms 673 

are often desired. To this end, the number of clusters was reduced to 3, 2, and 1 for the 1-yr, 20-674 

yr, and 100-yr events, respectively, and associated storm dates that capture these return level 675 

responses across larger coastal cells were determined. This reduced the computation time nearly 676 

four-fold (from 25 to 6 full detailed runs). This approach allows for robust identification of group 677 

response considering limitations put forth by the needs of the study (in this case a need to reduce 678 

the number of events for subsequent deterministic full numerical modeling), but with the 679 

recognition that specific return period events might be better represented by slightly different 680 

storms. For situations such as the one presented here, particular care was needed to ensure that 681 

incident wave directions from the reduced number of clusters adequately represented (� in the 682 

full list of 9 storms.  683 
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6 Conclusions 684 

A computationally efficient method and accompanying models are developed to identify 685 

GCM-driven storm events that result in coastal flood hazards along coherent sections of a 686 

shoreline subjected to spatially-varying winds, wave patterns, storm surge, and other non-tidal 687 

water level fluctuations. Coherent coastal cells are found by k-means clustering of TWLpx 688 

extremes computed at closely spaced intervals (~100 m) along the shore. Storm dates of select 689 

local return period events are found by relating the coastal cell responses to region-wide storms 690 

characterized by offshore GCM wind and wave conditions. The method and models are 691 

developed and implemented using outputs from the GFDL-ESM2M RCP4.5 climate change 692 

scenario downscaled to the Southern California Bight, an area punctuated by islands, canyons, 693 

and varying shoreline orientations. 694 

Clustering of 1-yr, 20-yr, and 100-yr return period local TWLpx show that the more severe 695 

but rare coastal flood events (e.g., the 100-yr event) typically occur from the same storm, and 696 

that a number of different storms are responsible for the less severe but more frequent local 697 

extreme water levels. For Southern California, the return period threshold that delivers near 698 

uniform response intensities along the coast is between the 20-yr and 100-yr events. 699 

Identification of the storm dates and analysis of the associated region-wide GCM wind and wave 700 

conditions indicates that distantly generated swell are relatively more important than locally 701 

generated waves for the more intense 100-yr storm compared to the 1-yr and 20-yr return period 702 

events.  703 

In the absence of tides, results show that extreme TWLpx, defined as the 98th percentile of 704 

each 100-year long time-series at each nearshore point, are dominated by R2% (>85%) along this 705 

high-energy open coast. The joint occurrence of tides and high wave events was not evaluated in 706 

this study since the focus was on identifying storm events from large scale GCMs that are not 707 

temporally accurate to the hour (in contrast to deterministically computed astronomic tides). It is 708 

recognized however, that in areas with meso- to macro-scale tides, nearshore wave heights, 709 

runup, and storm surge are influenced by tide-related depth changes and currents. In this study, 710 

these nonlinear effects are assumed to be small enough to not significantly affect the storm 711 

selection process. 712 

The fact that R2% dominates the non-tidal TWLpx signal highlights the importance for 713 

accurate representation of the wave climate along this complex coastline. Prior to calculating 714 

R2%, waves were propagated to the nearshore with the use of a look-up-table developed from 715 

hindcasted numerical wave simulations. Spatial patterns generated with the numerical wave 716 

model clearly show lower SWHs along sections of the coast where R2% might otherwise be over-717 

estimated if changes in wave energy and direction due to island shadowing and complex 718 

geography and bathymetry were not accounted for.  719 

Comparison of projected and historical extreme TWLpx indicate that the greatest relative 720 

change, assuming the RCP4.5 climate scenario and GFDL-ESM2M, will occur during the middle 721 
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of the century. Extreme TWLpx, are estimated to be approximately 3% greater during 2041-2070 722 

compared to the 1976-2005 historical time period. By the end of the century, R2% is projected to 723 

decrease in response to lower extreme SWH, resulting in TWLpx that are only marginally greater 724 

than historical extremes. Along sheltered regions of the coast where R2% are small, ��
 725 

dominates the TWLpx signal resulting in a near 4% increase of extreme TWLpx at the end of the 726 

century. Extreme SLA, primarily associated with El Niño effects, were modeled with a simple 727 

but conservatively high linear regression model that relates observed sea-surface temperature 728 

anomalies to the upper-envelope of SLAs measured at a tide gauge within the study area.  729 

The storm dates and affected coastal cells identified as part of this study have been used 730 

to simulate locally derived return period storms in combination with various sea level states 731 

using the deterministic CoSMoS model (e.g, Barnard et al. 2014). Future work may include 732 

comparing the CoSMoS model results to TWLpx to evaluate whether or not the added 733 

computation time and effort of the deterministic model provides much improved flood levels 734 

compared to the quicker superposition of components to estimate TWLs.  735 
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 969 

Figure 1. Flowchart summarizing the workflow used to determine TWL proxies at the coast and 970 
selecting future storm events for detailed deterministic modeling of local extreme flood events. 971 
Dashed and solid rectangles refer to input data and computations + outputs, respectively; ovals and 972 
circles refer to outputs. Numbered items 1 through 3 highlight results discussed in detail in the text.   973 
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 977 

Figure 2. Overview of the study area and wave model grid and boundaries. (A) Southern California 978 
Bight study area with bathymetry (background image: Esri, DeLorme, GEBCO, NOAA NGDC and 979 
others). Red circles and dashed red line indicates SWAN model grid bounds and U.S. Army Corps 980 
of Engineers Wave Information Study (WIS) boundary forcing points used to compute a 30-yr 981 
hindcast of nearshore waves. Root-mean square errors between model outputs and observations are 982 
shown with the colored triangles. CDIP067 (green square) indicates offshore location where winds 983 
and deep-water waves are related to nearshore wave conditions via a look-up-table. Colored 984 
contours depict wave heights simulated with the same grid nested in a larger grid that extends past 985 
the continental shelf (bounds partially shown with black dashed line, SWH = 6 m, Tp = 13s, Dp = 986 
288º) to illustrate shadowing and blocking of wave energy by the Channel Islands. (B - D) Zoom-in 987 
of the nearshore grid in the vicinity of Santa Barbara, Los Angeles, and La Jolla. Tide gauge 988 
locations used in the study are shown with black squares. Red dots (cross-shore transect points) 989 
show locations along the 10 m isobath where total water level proxies are computed. cross-shore 990 
transects are numbered from 1 near the U.S./Mexico border to 4,802 near Pt. Conception. 991 
Bathymetric contours are at 50 m intervals.  992 
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 996 

 997 

Figure 3. Measured water levels and decomposed time-series of storm surge and of mean monthly sea level 998 
anomalies. (A-C) Los Angeles tide gauge #9410660; (D-F) La Jolla tide gauge #9410230. Measured water 999 
levels in (A) and (D) are referenced to vertical datum NAVD88. 1000 
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 1002 

Figure 4. Measured and modeled storm surge levels. (A) Observed storm surge levels at La Jolla and 1003 
Los Angeles tide gauges (01 Aug 1924 through 31 Dec 2014). Filled circles are the median, upper 1004 
and lower edges of the rectangles are the 25th and 75th percentiles, and open circles are extremes 1005 
above and below the 98th and 2nd percentiles. (B) Measured and computed (using Eq. 2) storm surge 1006 
levels at the Los Angeles tide gauge (01 Jan 1980 through 31 Dec 2010). 1007 
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 1012 

Figure 5. Sea level anomalies (SLA) and sea surface temperature anomalies (SSTAs) at the La Jolla tide 1013 
gauge (1981-2014) and linear fit through the upper envelope (highest value at 0.25° bins shown with squares).  1014 
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 1019 

Figure 6. Bight-wide averaged time-series of historical and projected nearshore coastal water levels using 1020 
downscaled GFDL-ESM2M, RCP4.5. (A) Wave runup, (B) storm surge, (C) sea level anomalies, and (D) total 1021 
water level proxies equal to the summation of all three components in A through C.  1022 
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 1024 

Figure 7. Percent change of extremes between three 30-year projected time-slices and the historical time-1025 
period (1976 – 2005). Percent change of the 98th percentile (A) wave runup assuming a constant foreshore 1026 
slope of 0.03, (B) storm surge, (C) sea level anomalies, and (D) TWLpxs, the summation of all components.  1027 
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 1029 

 1030 

Figure 8. GCM modeled monthly mean SSTs within the Southern California Bight. Four regions associated 1031 
with the GCM grid points are defined from south (Group 1) to north (Group 4). Historical (1976-2005) and 1032 
projected (2012-2100) monthly means are shown with lighter and darker colored bars, respectively. Vertical 1033 
black lines depict projected monthly maxima.  1034 
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 1036 

Figure 9. Identification of coastal cells that respond similarly to region-wide storms. Large colored arrows 1037 
show the weighted mean (Table 4) offshore wave heights and winds for the 1-yr, 20-yr and 100-yr return 1038 
period coastal storms. 1039 
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